BARC technical documents
The benchmark overview, the setup information and the output data requests for both experimental and computational approaches are reported in the documents:
To cite one of these BARC documents:
Bartoli G., Bruno L., Cimarelli A., Mannini C., Patruno L., Ricciardelli F., Salvetti M.V., (2020). Title of the document, https://www.aniviawe.org/barc
BARC papers
Join the Mendeley public group
BARC Benchmark

you’ll get access to / export the full bibliography

you’ll be able to add new entries

you can post news of common interest for the group members

you can upload published materials and notes not restricted by copyright (BARC and Mendeley support responsible sharing, learn how you can share)
Acutally our bibliographic catalogue is divided into two categories:

BARC studies, i.e. the ones in the wake of BARC

Rectangle aerodynamics: a collection of studies on the topic
Are you submitting a manuscript in the wake of BARC?
Do not forget to include «BARC benchmark» among keywords for easy indexing!
In the following you can find in chronological order a selection of journal papers published in the wake of BARC

2010 Bruno et al, 3D flow around a rectangular cylinder: A computational study, JWEIA 98, 263276, DOI: 10.1016/j.jweia.2009.10.005

2010 Mannini et al, Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects, C&F 39, 1609–1624, DOI: 10.1016/j.compfluid.2010.05.014

2011 Mannini et al, Numerical investigation on the threedimensional unsteady flow past a 5:1 rectangular cylinder, JWEIA 99, 469482, DOI: 10.1016/j.jweia.2010.12.016

2012 Bruno et al, Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features, JWEIA 104106, 203215, DOI: 10.1016/j.jweia.2012.03.018

2013 Schewe Reynoldsnumbereffects in flow around a rectangular cylinder with aspect ratio 1:5, JFS 39, 1526, DOI: 10.1016/j.jfluidstructs.2013.02.013

2013 Arslan et al, Turbulent flow around a semisubmerged rectangular cylinder, JOMAE 135, 041801, DOI: 10.1115/1.4025144

2014 Bruno et al, Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder: An overview after the first four years of activity, JWEIA 126, 87106, DOI: 10.1016/j.jweia.2014.01.005

2015 Nieto et al, Bridge deck flutter derivatives: Efficient numerical evaluation exploiting their interdependence 136, 138150, DOI: 10.1016/j.jweia.2014.11.006

2016 Patruno et al, Numerical simulation of a 5:1 rectangular cylinder at nonnull angles of attack, JWEIA 151, 146157, DOI: 10.1016/j.jweia.2016.01.008

2016 Ricci et al, Effects of low incoming turbulence on the flow around a 5:1 rectangular cylinder at nonnullattack angle, MPE 2016, 2302340, DOI: 10.1155/2016/2302340

2016 Mariotti et al, Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder, C&F 136, 170192, DOI: 10.1016/j.compfluid.2016.06.008

2017 Mannini et al, The effects of freestream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section , JWEIA 161 , 4258, DOI: 10.1016/j.jweia.2016.12.001

2017 Ricci et al, Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction, C&F 149, 181193, DOI: 10.1016/j.compfluid.2017.03.010

2017 Mariotti et al, Stochastic sensitivity analysis of largeeddy simulation predictions of the flow around a 5:1 rectangular cylinder, EJM B/Fluids 62, 149165, DOI: 10.1016/j.euromechflu.2016.12.008

2018 Cimarelli et al, Direct numerical simulation of the flow around a rectangular cylinder at a moderately high Reynolds number, JWEIA 174, 3949, DOI: 10.1016/j.jweia.2017.12.020

2018 Nguyen et al, Vortexinduced vibration of a 5:1 rectangular cylinder: A comparison of wind tunnel sectional model tests and computational simulations, JWEIA 175, 116, DOI: 10.1016/j.jweia.2018.01.029

2018 Cimarelli et al, On the structure of the selfsustaining cycle in separating and reattaching flows, JFM 857, 907936, DOI: 10.1017/jfm.2018.772

2019 Alvarez et al, 3D LES simulations of a static and vertically freetooscillate 4:1 rectangular cylinder: Effects of the grid resolution, JWEIA 192, 3144, DOI: 10.1016/j.jweia.2019.06.012

2019 Yang et al , Aerodynamic admittance of a 5:1 rectangular cylinder in turbulent flow, JWEIA 189, 125134, DOI: 10.1016/j.jweia.2019.03.023

2019 Guissart et al, Numerical and experimental study of the flow around a 4:1 rectangular cylinder at moderate Reynolds number, JWEIA 189, 289303, DOI: 10.1016/j.jweia.2019.03.026

2019 Lin et al, Effects of oscillation amplitude on motioninduced forces for 5:1 rectangular cylinders, JWEIA 186, 6883, DOI: 10.1016/j.jweia.2019.01.002

2019 Ma et al Investigation on vortexinduced vibration of twin rectangular 5:1 cylinders through wind tunnel tests and POD analysis, JWEIA 187, 97107, DOI: 10.1016/j.jweia.2019.01.002

2019 Cimarelli et al, On negative turbulence production phenomena in the shear layer of separating and reattaching flows, Ph Let A 383, 1019–1026, DOI: 10.1016/j.physleta.2018.12.026

2019 Moore et al, Energetic scales in a bluff body shear layer, JFM 875, 543–575, DOI: 10.1017/jfm.2019.480

2020 Wu et al, Largeeddy simulation of the near wake of a 5:1 rectangular cylinder in oscillating flows at Re=670, JWEIA 196, 104050, DOI: 10.1016/j.jweia.2019.104050

2020 Wu et al, Numerical investigation of the separated and reattaching flow over a 5:1 rectangular cylinder in streamwise sinusoidal flow, JWEIA 198, 104120, DOI: 10.1016/j.jweia.2020.104120

2020 Wu et al, Numerical and experimental studies on the aerodynamics of a 5:1 rectangular cylinder at angles of attack, JWEIA 199, 104097, DOI: 10.1016/j.jweia.2020.104097

2020 Zhang et al, Spanwise length and mesh resolution effects on simulated flow around a 5:1 rectangular cylinder, JWEIA 202, 104186, DOI: 10.1016/j.jweia.2020.104186
BARC CITATIONS
In the following you can find some statisticts on the selected journal papers above
(last update: June 2020)